- Process previously frozen tissues like freshly harvested samples
- Thawing tissues in RNAlater-ICE protects RNA from degradation
- No more tissue pulverizing with mortar and pestle and awkward transfer of powder to tube
- Easily apportion frozen tissue samples for multiple experiments
RNAlater-ICE Frozen Tissue Transition Solution is a unique RNA stabilizing solution. Simply drop frozen tissues into RNAlater-ICE and walk away! Once tissues are thawed they can be easily processed using standard RNA isolation procedures. No more laborious grinding of frozen tissue to preserve RNA in difficult tissues or tissues that need to be stored prior to isolation. Treated tissues can be directly inserted into standard homogenization and isolation protocols and processed as though fresh.
Quick Freezing Tissues Preserves RNA
Processing Frozen Tissues is Problematic
Process Frozen Tissue Without Jeopardizing RNA Integrity — RNAlater-ICE
RNAlater-ICE solves all of these problems. Simply submerge frozen tissue samples in 10 volumes of RNAlater-ICE and store overnight at -20 or -80ºC (the solution will remain liquid at these temperatures). As the tissue thaws, RNA integrity is protected. Once treated, tissue can be safely stored at 4ºC or even at room temperature (for a limited period of time) and can be further dissected or processed prior to homogenization in a standard RNA isolation lysis buffer. Thus the same frozen tissue sample can be used multiple times for different experiments without compromising RNA integrity.
Figure 1 shows the quality of RNA isolated from three different frozen mouse tissues that were immediately homogenized or thawed in RNAlater-ICE overnight at -20ºC. Both the stained gel and the resulting Northern blot demonstrate that RNAs isolated from tissues treated with RNAlater-ICE maintain a high degree of integrity. The dramatic preservation of RNA by RNAlater-ICE is also illustrated in Figure 2. Here we compare RNA that was prepared directly by homogenization of frozen tissue, with a sample that was allowed to thaw at room temperature for 5 minutes, and a sample that was frozen, soaked overnight at -20ºC in RNAlater-ICE, and kept at room temperature for 30 minutes before being processed for RNA isolation. The protective effect of RNAlater-ICE is obvious.
Figure 2. RNA Integrity from Frozen Samples Ground, Thawed or Treated with RNAlater-ICE. Total RNA was isolated from mouse liver samples that were processed directly from a frozen state (ground), thawed on a benchtop for 5 min (thawed), or thawed overnight at -20ºC in RNAlater-ICE and then stored at rt for 30 min prior to RNA isolation (treated). (A) shows the ethidium bromide stained RNA in a denaturing agarose gel. (B) shows the results of Northern blot analysis of the same gel hybridized to radiolabeled probes for ß-actin, GAPDH, and cyclophilin. Note that frozen tissue thawed in the absence of RNAlater-ICE yielded degraded RNA while RNA remained intact when tissue was thawed in RNAlater-ICE.