With growing complexity and ever higher standards of reliability, quality control and assurance of manufactured parts have become increasingly more vital in modern industry. A critical aspect of quality regulation is failure analysis, which provides insight into the root cause of the component/material failure, establishing metrics for quality control during the manufacturing process, and enforcing 3rd-party quality requirements. Since component failure is often a direct result of numerous small, microscopic defects, their multi-scale observation and quantification is the only way to obtain the accurate characterization needed for root cause determination.
Thermo Fisher Scientific offers a range of tools for monitoring consistency through the holistic identification and study of defects, faults, and failures. For the analysis of large volumes, X-ray microtomography (microCT) is a non-destructive technique that generates 3D reconstructions of samples with micrometer resolution. Essentially identical to familiar hospital CAT scan technology, microCT provides a practical overview of the material for defect localization and isolation. These can subsequently be extracted and analyzed further by higher-resolution techniques, such as electron microscopy (EM).
With EM, structural details down to the nanometer scale become available. This allows for precise characterization of microscopic defects or nanoscale deviations from process specifications that could not be observed with other tools. With this information in hand, engineers and researchers can enact quality improvements in the earliest stages of defect formation.
Not only does electron microscopy offer unparalleled structural detail, but the technique also has the added benefit of elemental analysis. This method, called energy-dispersive X-ray spectroscopy (EDS, EDX, or XEDS), is made possible by the X-rays emitted from the sample surface during electron bombardment. The X-ray spectra are characteristic of the material they originate from, whereas the intensity of the peaks corresponds to concentration. This signal can be linked to a position on the EM image for elemental insight of observed defects. In fact, Thermo Scientific ChemiSEM Technology even features live EDX analysis, which automatically colors greyscale electron micrographs, granting instant chemical context for observed faults and defects.